NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Publisher
By Publisher
6 Min Read
Jupiter’s southern hemisphere is shown in this image from NASA’s Juno mission. New observations by NASA’s NuSTAR reveal that auroras near both the planet’s poles emit high-energy X-rays, which are produced when accelerated particles collide with Jupiter’s atmosphere. Credit: Enhanced image by Kevin M. Gill (CC-BY) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS

The planet’s auroras are known to produce low-energy X-ray light. A new study finally reveals higher-frequency X-rays and explains why they eluded another mission 30 years ago.

Scientists have been studying Jupiter up close since the 1970s, but the gas giant is still full of mysteries. New observations by NASA’s NuSTAR space observatory have revealed the highest-energy light ever detected from Jupiter. The light, in the form of X-rays that NuSTAR can detect, is also the highest-energy light ever detected from a solar system planet other than Earth. A paper in the journal Nature Astronomy reports the finding and solves a decades-old mystery: Why the Ulysses mission saw no X-rays when it flew past Jupiter in 1992.

X-rays are a form of light, but with much higher energies and shorter wavelengths than the visible light human eyes can see. NASA’s Chandra X-ray Observatory and the ESA (European Space Agency) XMM-Newton observatory have both studied low-energy X-rays from Jupiter’s auroras – light shows near the planet’s north and south poles that are produced when volcanoes on Jupiter’s moon Io shower the planet with ions (atoms stripped of their electrons). Jupiter’s powerful magnetic field accelerates these particles and funnels them toward the planet’s poles, where they collide with its atmosphere and release energy in the form of light.

Electrons from Io are also accelerated by the planet’s magnetic field, according to observations by NASA’s Juno spacecraft, which arrived at Jupiter in 2016. Researchers suspected that those particles should produce even higher-energy X-rays than what Chandra and XMM-Newton observed, and NuSTAR (short for Nuclear Spectroscopic Telescope Array) is the first observatory to confirm that hypothesis.

NuSTAR detected high-energy X-rays from the auroras near Jupiter’s north and south poles. NuSTAR cannot locate the source of the light with high precision, but can only find that the light is coming from somewhere in the purple-colored regions.
Credit: NASA/JPL-Caltech

“It’s quite challenging for planets to generate X-rays in the range that NuSTAR detects,” said Kaya Mori, an astrophysicist at Columbia University and lead author of the new study. “But Jupiter has an enormous magnetic field, and it’s spinning very quickly. Those two characteristics mean that the planet’s magnetosphere acts like a giant particle accelerator, and that’s what makes these higher-energy emissions possible.”

Researchers faced multiple hurdles to make the NuSTAR detection: For example, the higher-energy emissions are significantly fainter than the lower-energy ones. But none of the challenges could explain the nondetection by Ulysses, a joint mission between NASA and ESA that was capable of sensing higher-energy X-rays than NuSTAR. The Ulysses spacecraft launched in 1990 and, after multiple mission extensions, operated until 2009.

The solution to that puzzle, according to the new study, lies in the mechanism that produces the high-energy X-rays. The light comes from the energetic electrons that Juno can detect with its Jovian Auroral Distributions Experiment (JADE) and Jupiter Energetic-particle Detector Instrument (JEDI), but there are multiple mechanisms that can cause particles to produce light. Without a direct observation of the light that the particles emit, it’s almost impossible to know which mechanism is responsible.

“It’s quite challenging for planets to generate X-rays in the range that NuSTAR detects,” said Kaya Mori, an astrophysicist at Columbia University and lead author of the new study. “But Jupiter has an enormous magnetic field, and it’s spinning very quickly. Those two characteristics mean that the planet’s magnetosphere acts like a giant particle accelerator, and that’s what makes these higher-energy emissions possible.”

Researchers faced multiple hurdles to make the NuSTAR detection: For example, the higher-energy emissions are significantly fainter than the lower-energy ones. But none of the challenges could explain the nondetection by Ulysses, a joint mission between NASA and ESA that was capable of sensing higher-energy X-rays than NuSTAR. The Ulysses spacecraft launched in 1990 and, after multiple mission extensions, operated until 2009.

The solution to that puzzle, according to the new study, lies in the mechanism that produces the high-energy X-rays. The light comes from the energetic electrons that Juno can detect with its Jovian Auroral Distributions Experiment (JADE) and Jupiter Energetic-particle Detector Instrument (JEDI), but there are multiple mechanisms that can cause particles to produce light. Without a direct observation of the light that the particles emit, it’s almost impossible to know which mechanism is responsible.

JPL manages the Juno mission for the principal investigator, Scott J. Bolton of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space in Denver built and operates the spacecraft.

Follow the Juno mission on Facebook and Twitter, and get more information about Juno online at:

https://www.nasa.gov/juno

 

Credit: NASA/JPL-Caltech

Share This Article
Follow:
At Crossfire Reports, we will tell your story and we take both sides of the story and subject matter. Also place your adverts on www.crossfirereports.com and send your stories opinions to mike@crossfirereports.com